Abstract
Abstract
A novel moving frame-of-reference brightness-based laser-induced fluorescence (MFoR-BBLIF) method was developed and demonstrated in downwards co-current air–water annular flows. The method was applied to study the downstream development of individual disturbance waves in flows over a range of conditions (ReL = 276–1321, ReG = 39,500–79,000). In this method, the optical measurement system, and hence, the region of interrogation (ROI) was translated physically along the length of the test-section with a velocity close to that of individual disturbance waves to obtain the velocities of individual disturbance-waves as a function of downstream distance from the inlet. It was found that the velocities of individual disturbance waves increase with both downstream distance and gas–liquid flow conditions. In addition, the variation in the wave velocities was more significant at higher gas and liquid Reynolds numbers. The approach can be integrated with many other contactless measurement methods, and can also be used over a range of translation speeds (not necessarily in a “Lagrangian” manner) to study the evolution of important advecting flow phenomena.
Graphic abstract
Funder
МЕГАГРАНТЫ
Department for International Development
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献