Development of limited-view tomography for measurement of Spray G plume direction and liquid volume fraction

Author:

Weiss LukasORCID,Wensing Michael,Hwang Joonsik,Pickett Lyle M.,Skeen Scott A.

Abstract

Abstract The method for direct injection of fuel in the cylinder of an IC engines is important to high-efficiency and low-emission performance. Optical spray diagnostics plays an important role in understanding plume movement and interaction for multi-hole injectors, and providing baseline understanding used for computational optimization of fuel delivery. Traditional planar or line-of-sight diagnostics fail to capture the liquid distribution because of optical thickness concerns. This work proposes a high-speed (67 kHz) extinction imaging technique at various injector rotations coupled to computed tomography (CT) for time-resolved reconstruction of liquid volume fraction in three dimensions. The number of views selected and processing were based on synthetic (modeled) liquid volume fraction data where extinction and CT adequately reconstructed each plume. The exercise showed that for an 8-hole, symmetric-design injector (ECN Spray G), only three different views are enough to reproduce the direction of each plume, and particularly the mean plume direction. Therefore, the number of views was minimized for experiments to save expense. Measurements applying this limited-view technique confirm plume–plume variations also detected with mechanical patternation, while providing better spatial and temporal resolution than achieved previously. Uncertainties due to the limited view within pressurized spray chambers, the droplet size, and optically thick regions are discussed. Graphic abstract

Funder

Bayerisch-Kalifornisches Hochschulzentrum

Office of Energy Efficiency and Renewable Energy

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3