Impact of solar heat enhanced by the use of black polypropylene sheets on the development of Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae) eggs and germinabilty of cowpea seeds

Author:

Ajayi F. A.ORCID,Peter E.ORCID,Okrikata E.ORCID,Emmanuel R. A. L.,Dattijo S. A.,Kayode E. A

Abstract

AbstractPost-harvest losses caused by Callosobruchus maculatus is a major constraint to cowpea production and the improper use of synthetic insecticides by most farmers have resulted in environmental, health hazards, and development of insecticide resistance in insects. This study evaluates the efficacy of solar heat treatment using double-layered black polypropylene sheets in suppressing the development of the cowpea bruchid eggs and the effect of the heat absorbed on the germination potential of cowpea seeds. Five pairs of 2 – 3-day old adult C. maculatus were allowed to oviposit for ten days on 50 g cowpea seeds in a glass jar in the laboratory before exposure to 24, 48, 72 and 96 h solar heat treatment regimes. Infested cowpea seeds but not exposed to solarization was set along with the treatments while uninfested cowpea seeds was also set along and used as part of the germinability test. The experiment was laid out in a completely randomized design and treatments were replicated four times. The results showed that there were no significant differences among the number of eggs laid by adult C. maculatus on the cowpea seeds before solar heat treatment. Solar heat treatment of the cowpea seed at 24 h achieved 100% egg mortality of C. maculatus thus preventing adult emergence. The effect of solarization on seed viability showed that there were no significant differences between the infested cowpea seeds exposed to different solar radiation regimes when compared to uninfested cowpea seeds – range; 74% – 99% germination. The results showed that 24 h solar heat exposure of cowpea seeds in double-layered black polypropylene sheets could be the thermal death point of C. maculatus eggs on the seeds in the study area.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3