Abstract
Abstract
We speculate that the weak gravity conjecture applied to theories with holographic duals bans the existence of disordered phases at zero temperature. We test this idea by introducing a non-zero baryon chemical potential in a deformation of the SU(Nc) × SU(Nc) Klebanov-Witten gauge theory with broken supersymmetry and conformal invariance. At low temperature, a disordered phase dual to a black brane geometry is unstable for low chemical potentials and metastable for high values. In the metastable phase, states with a partial Higgsing of the gauge group are favored over the normal disordered phase. This is reflected in the properties of the effective potential for color branes in the dual geometry, where the appearance of a global minimum outside the horizon signals the onset of a brane nucleation instability. When the Higgsing involves only one of the group factors, the global minimum remains at a finite distance from the horizon, making it possible to construct holographic duals to metastable “color superconducting” states. We also consider branes dual to excitations with baryon charge, but find that the extremal geometry remains marginally stable against the emission of particles carrying baryon charge independently of the strength of the deformation.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference106 articles.
1. X.-G. Wen, Choreographed entangle dances: topological states of quantum matter, arXiv:1906.05983 [INSPIRE].
2. N. Brambilla et al., QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].
3. M.G. Alford, K. Rajagopal and F. Wilczek, Color flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537 (1999) 443 [hep-ph/9804403] [INSPIRE].
4. M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].
5. T. Schäfer, Meson supercurrent state in high density QCD, Phys. Rev. Lett. 96 (2006) 012305 [hep-ph/0508190] [INSPIRE].
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献