Renormalon subtraction in OPE using Fourier transform: formulation and application to various observables

Author:

Hayashi Yuuki,Sumino Yukinari,Takaura Hiromasa

Abstract

Abstract Properly separating and subtracting renormalons in the framework of the op- erator product expansion (OPE) is a way to realize high precision computation of QCD effects in high energy physics. We propose a new method (FTRS method), which enables to subtract multiple renormalons simultaneously from a general observable. It utilizes a property of Fourier transform, and the leading Wilson coefficient is written in a one-parameter integral form whose integrand has suppressed (or vanishing) renormalons. The renormalon subtraction scheme coincides with the usual principal-value prescription at large orders. We perform test analyses and subtract the $$ \mathcal{O}\left({\Lambda}_{\mathrm{QCD}}^4\right) $$ O Λ QCD 4 renormalon from the Adler function, the $$ \mathcal{O}\left({\Lambda}_{\mathrm{QCD}}^2\right) $$ O Λ QCD 2 renormalon from the BXul$$ \overline{\nu} $$ ν ¯ decay width, and the $$ \mathcal{O} $$ O QCD) and $$ \mathcal{O}\left({\Lambda}_{\mathrm{QCD}}^2\right) $$ O Λ QCD 2 renormalons from the B, D meson masses. The analyses show good consistency with theoretical expectations, such as improved convergence and scale dependence. In particular we obtain $$ \overline{\Lambda} $$ Λ ¯ FTRS = 0.495 ± 0.053 GeV and ($$ {\mu}_{\pi}^2 $$ μ π 2 )FTRS = 0.12 ± 0.23 GeV2 for the non-perturbative parameters of HQET. We explain the formulation and analyses in detail.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3