Abstract
AbstractFactorization theorems allow to separate out the universal, non-perturbative content of the hadronic cross section from its perturbative part, which can be computed in perturbative QCD, up to the desired order. In this paper, we derive a rigorous proof of factorization of thee+e−→hXcross section, sensitive to the transverse momentum of the detected hadron with respect to the thrust axis, in a completely general framework, based on the Collins-Soper-Sterman approach. This procedure naturally leads to a partition of thee+e−→hXkinematics into three different regions, each associated to a different factorization theorem. In one of these regions, which covers the central and widest range, the factorization theorem has a new structure, which shares the features of both TMD and collinear factorization schemes. In the corresponding cross section, the role of the rapidity cut-off is investigated, as its physical meaning becomes increasingly evident. An algorithm to identify these three kinematic regions, based on ratios of observable quantities, is provided.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献