Squeezing, chaos and thermalization in periodically driven quantum systems: the case of bosonic preheating

Author:

Chakraborty AyanORCID,Maity Debaprasad

Abstract

Abstract The phenomena of Squeezing and chaos have recently been studied in the context of inflation. We apply this formalism in the post-inflationary preheating phase. During this phase, the inflaton field undergoes quasi-periodic oscillation, which acts as a driving force for the resonant growth of quantum fluctuation or particle production. Furthermore, the quantum state of the fluctuations is known to have evolved into a squeezed state. In this submission, we explore the underlying connection between the resonant growth, squeezing, and chaos by computing the Out of Time Order Correlator (OTOC) of phase space variables and establishing a relation among the Lyapunov, Floquet exponents, and squeezing parameters. For our study, we consider observationally favored α-attractor E-model of inflaton coupled with the bosonic field. After the production, the system of produced bosonic fluctuations/particles from the inflaton is supposed to thermalize, and that is believed to have an intriguing connection to the nature of chaos of the system under perturbation. We conjecture a relation between the thermalization temperature ($$ {\overline{T}}_{\textrm{SS}} $$ T ¯ SS ) of the system and quantum squeezing, which is further shown to be consistent with the well-known Rayleigh-Jeans formula for the temperature symbolized as $$ {\overline{T}}_{\textrm{RJ}} $$ T ¯ RJ , and that is $$ {\overline{T}}_{\textrm{SS}}\simeq {\overline{T}}_{\textrm{RJ}} $$ T ¯ SS T ¯ RJ . Finally, we show that the system temperature is in accord with the well-known lower bound on the temperature of a chaotic system proposed by Maldacena-Shenker-Stanford (MSS).

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3