Abstract
Abstract
I consider the Festina Lente Swampland bound and argue taking thermal effects, as for instance occur during reheating, into account significantly strengthens the implications of this bound. I argue that the confinement scale should be higher than a scale proportional to the vacuum energy, while Festina Lente without thermal effects only bounds the confinement scale to be above the Hubble scale. For Higgsing of nonabelian gauge fields, I find that the magnitude of the Higgs mass should be heavier than a bound proportional to the Electroweak scale (or generally the scale set by the Higgs VEV). The measured values of the Higgs in the SM satisfy the bound. A way to avoid the bound being violated during inflation is to have a large number of species becoming light. If one wants the inflationary scale to lie below the species scale in this case, this bounds the inflationary scale to be ≪ 105 GeV. These bounds have phenomenological implications for BSM physics such as GUTs, suggesting for example a weak or absent gravitational wave signature from the GUT Higgsing phase transition.
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. M. Montero, T. Van Riet and G. Venken, Festina Lente: EFT Constraints from Charged Black Hole Evaporation in de Sitter, JHEP 01 (2020) 039 [arXiv:1910.01648] [INSPIRE].
2. M. Montero, C. Vafa, T. Van Riet and G. Venken, The FL bound and its phenomenological implications, JHEP 10 (2021) 009 [arXiv:2106.07650] [INSPIRE].
3. G. Dall’Agata, M. Emelin, F. Farakos and M. Morittu, The unbearable lightness of charged gravitini, JHEP 10 (2021) 076 [arXiv:2108.04254] [INSPIRE].
4. E. Gonzalo, L.E. Ibáñez and I. Valenzuela, Swampland constraints on neutrino masses, JHEP 02 (2022) 088 [arXiv:2109.10961] [INSPIRE].
5. S.M. Lee et al., Festina-Lente bound on Higgs vacuum structure and inflation, JHEP 02 (2022) 100 [arXiv:2111.04010] [INSPIRE].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. String theory and the first half of the universe;Journal of Cosmology and Astroparticle Physics;2024-08-01
2. Extremal black hole decay in de Sitter space;Journal of High Energy Physics;2024-07-26