Abstract
Abstract
We study the expectation value of the $$ \mathrm{T}\overline{\mathrm{T}} $$
T
T
¯
operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $$ \mathrm{T}\overline{\mathrm{T}} $$
T
T
¯
operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $$ \mathrm{T}\overline{\mathrm{T}} $$
T
T
¯
operator depends on both the one- and two-point functions of the stress-energy tensor.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference57 articles.
1. F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
2. A. Cavaglià, S. Negro, I.M. Sźecśenyi and R. Tateo, $$ T\overline{T} $$-deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
3. A.B. Zamolodchikov, Expectation value of composite field $$ T\overline{T} $$ in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
4. S. Datta and Y. Jiang, $$ T\overline{T} $$ deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].
5. J. Cardy, The $$ T\overline{T} $$ deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献