Lattice regularisation of a non-compact boundary conformal field theory

Author:

Robertson Niall F.,Jacobsen Jesper Lykke,Saleur Hubert

Abstract

Abstract Non-compact Conformal Field Theories (CFTs) are central to several aspects of string theory and condensed matter physics. They are characterised, in particular, by the appearance of a continuum of conformal dimensions. Surprisingly, such CFTs have been identified as the continuum limits of lattice models with a finite number of degrees of freedom per site. However, results have so far been restricted to the case of periodic boundary conditions, precluding the exploration via lattice models of aspects of non-compact boundary CFTs and the corresponding D-brane constructions.The present paper follows a series of previous works on a ℤ2-staggered XXZ spin chain, whose continuum limit is known to be a non-compact CFT related with the Euclidian black hole sigma model. By using the relationship of this spin chain with an integrable $$ {D}_2^2 $$ D 2 2 vertex model, we here identify integrable boundary conditions that lead to a continuous spectrum of boundary exponents, and thus correspond to non-compact branes. In the context of the Potts model on a square lattice, they correspond to wired boundary conditions at the physical antiferromagnetic critical point. The relations with the boundary parafermion theories are discussed as well. We are also able to identify a boundary renormalisation group flow from the non-compact boundary conditions to the previously studied compact ones.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3