Neutrino forces in neutrino backgrounds

Author:

Ghosh Mitrajyoti,Grossman Yuval,Tangarife WalterORCID,Xu Xun-JieORCID,Yu BingrongORCID

Abstract

AbstractThe Standard Model predicts a long-range force, proportional to$$ {G}_F^2/{r}^5 $$GF2/r5, between fermions due to the exchange of a pair of neutrinos. This quantum force is feeble and has not been observed yet. In this paper, we compute this force in the presence of neutrino backgrounds, both for isotropic and directional background neutrinos. We find that for the case of directional background the force can have a 1/rdependence and it can be significantly enhanced compared to the vacuum case. In particular, background effects caused by reactor, solar, and supernova neutrinos enhance the force by many orders of magnitude. The enhancement, however, occurs only in the direction parallel to the direction of the background neutrinos. We discuss the experimental prospects of detecting the neutrino force in neutrino backgrounds and find that the effect is close to the available sensitivity of the current fifth force experiments. Yet, the angular spread of the neutrino flux and that of the test masses reduce the strength of this force. The results are encouraging and a detailed experimental study is called for to check if the effect can be probed.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fermion pair radiation from accelerating classical systems;Journal of High Energy Physics;2023-10-02

2. The dark Stodolsky effect: constraining effective dark matter operators with spin-dependent interactions;Journal of Cosmology and Astroparticle Physics;2023-07-01

3. On neutrino-mediated potentials in a neutrino background;Journal of High Energy Physics;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3