Abstract
Abstract
The recent proposal [1, 2] of implementing electric-magnetic duality rotation at the level of perturbative scattering amplitudes and its generalisation to gravitational context where usual gravitational mass is rotated to the NUT parameter of the Taub-NUT spacetime opens up an interesting avenue for studying NUT-charged objects as dynamical entities, in contrast to the usual approach where NUT-charged objects are considered as a static background. We extend the tree-order analysis to one-loop order, and find a disagreement between geodesic motion on Taub-NUT background and impulse computation of scattering amplitudes. As a by-product of our analysis, we find a relation between tidal response parameters and resonance excitation parameters in the language of quantum field theory scattering amplitudes.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference88 articles.
1. Y.-T. Huang, U. Kol and D. O’Connell, Double copy of electric-magnetic duality, Phys. Rev. D 102 (2020) 046005 [arXiv:1911.06318] [INSPIRE].
2. W. T. Emond, Y.-T. Huang, U. Kol, N. Moynihan and D. O’Connell, Amplitudes from Coulomb to Kerr-Taub-NUT, arXiv:2010.07861 [INSPIRE].
3. A. H. Taub, Empty space-times admitting a three parameter group of motions, Annals Math. 53 (1951) 472 [INSPIRE].
4. E. Newman, L. Tamburino and T. Unti, Empty space generalization of the Schwarzschild metric, J. Math. Phys. 4 (1963) 915 [INSPIRE].
5. C. W. Misner, The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space, J. Math. Phys. 4 (1963) 924 [INSPIRE].
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献