UV constraints on massive spinning particles: lessons from the gravitino

Author:

Melville ScottORCID,Roest Diederik,Stefanyszyn David

Abstract

Abstract Self-interacting massive particles with spin 1 unavoidably violate unitarity; the question is at what scale. For spin-1 the strong coupling scale (at which perturbative unitarity is lost) cannot be raised by any finite tuning of the interactions, while for spin-2 there exists a special tuning of the Wilson coefficients which can raise this scale (and enjoys numerous special properties such as ghost-freedom). Here, we fill in the missing piece by describing how the self-interactions of a massive spin-3/2 field, or “massive gravitino”, become strongly coupled at high energies. We show that while several different structures appear in the leading order potential, the strong coupling scale cannot be raised (in the absence of additional fields). At the level of the off-shell Lagrangian, it is always the non- linear symmetries of the longitudinal Stückelberg mode that dictate the strong coupling, and we show that in general it is only possible to parametrically raise the strong coupling scale if Wess-Zumino structures exist for these symmetries. We complement this off-shell approach with a first analysis of positivity bounds for a massive spin-3/2 particle, showing that any potential self-interaction which contributes to an on-shell 2-to-2 elastic process at tree level must vanish if this low-energy theory is to have a standard UV completion. We identify the mixing between the longitudinal mode and the transverse modes as the main obstacle to positivity, and clarify how the non-Abelian nature of non-linear (dRGT) massive gravity allows it to satisfy positivity where all known spin 3/2 Abelian theories fail. Our results imply that a massive gravitino cannot appear alone in a controlled EFT — it must be accompanied by other particles, e.g. as part of a supermultiplet. Together with the spin-1 and spin-2 cases, we suggest features which will persist in even higher spin massive theories.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3