Abstract
Abstract
In this paper, we scrutinize a radiatively generated QCD θ parameter at the two-loop level based on both full analytical loop functions with the Fock-Schwinger gauge method and the effective field theory approach, using simplified models. We observe that the radiatively generated θ parameters at the low energy scale precisely match between them. It provides validity to perturbative loop calculations of the QCD θ parameter with the Fock-Schwinger gauge method. Furthermore, it is also shown that the ordinary Fujikawa method for the radiative θ parameter by using $$ \overline{\theta} $$
θ
¯
= −arg det $$ {\mathcal{M}}_q^{\textrm{loop}} $$
M
q
loop
does not cover all contributions in the simplified models. But, we also find that when there is a scale hierarchy in CP-violating sector, evaluation of the Fujikawa method is numerically sufficient. As an application, we calculate the radiative θ parameter at the two-loop level in a slightly extended Nelson-Barr model, where the spontaneous CP violation occurs to solve the strong CP problem. It is found a part of the radiative θ parameters cannot be described by the Fujikawa method.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
2. χQCD collaboration, Nucleon electric dipole moment from the θ term with lattice chiral fermions, Phys. Rev. D 108 (2023) 094512 [arXiv:2301.04331] [INSPIRE].
3. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
4. T.S. Roussy et al., An improved bound on the electron’s electric dipole moment, Science 381 (2023) adg4084 [arXiv:2212.11841] [INSPIRE].
5. V.V. Flambaum, M. Pospelov, A. Ritz and Y.V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, Phys. Rev. D 102 (2020) 035001 [arXiv:1912.13129] [INSPIRE].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献