Abstract
Abstract
We initiate the study of gravitational wave (GW) signals from first-order phase transitions in supersymmetry-breaking hidden sectors. Such phase transitions often occur along a pseudo-flat direction universally related to supersymmetry (SUSY) breaking in hidden sectors that spontaneously break R-symmetry. The potential along this pseudo-flat direction imbues the phase transition with a number of novel properties, including a nucleation temperature well below the scale of heavy states (such that the temperature dependence is captured by the low-temperature expansion) and significant friction induced by the same heavy states as they pass through bubble walls. In low-energy SUSY-breaking hidden sectors, the frequency of the GW signal arising from such a phase transition is guaranteed to lie within the reach of future interferometers given existing cosmological constraints on the gravitino abundance. Once a mediation scheme is specified, the frequency of the GW peak correlates with the superpartner spectrum. Current bounds on supersymmetry are compatible with GW signals at future interferometers, while the observation of a GW signal from a SUSY-breaking hidden sector would imply superpartners within reach of future colliders.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference131 articles.
1. D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
2. N. Craig and D. Green, Testing split supersymmetry with inflation, JHEP 07 (2014) 102 [arXiv:1403.7193] [INSPIRE].
3. N. J. Craig, Gravitational waves from supersymmetry breaking, arXiv:0902.1990 [INSPIRE].
4. LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
5. LIGO Scientific and Virgo collaborations, Constraints on cosmic strings using data from the first advanced LIGO observing run, Phys. Rev. D 97 (2018) 102002 [arXiv:1712.01168] [INSPIRE].
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献