Closed strings and weak gravity from higher-spin causality

Author:

Kaplan Jared,Kundu SandipanORCID

Abstract

Abstract We combine old and new quantum field theoretic arguments to show that any theory of stable or metastable higher spin particles can be coupled to gravity only when the gravity sector has a stringy structure. Metastable higher spin particles, free or interacting, cannot couple to gravity while preserving causality unless there exist higher spin states in the gravitational sector much below the Planck scale Mpl. We obtain an upper bound on the mass Λgr of the lightest higher spin particle in the gravity sector in terms of quantities in the non-gravitational sector. We invoke the CKSZ uniqueness theorem to argue that any weakly coupled UV completion of such a theory must have a gravity sector containing infinite towers of asymptotically parallel, equispaced, and linear Regge trajectories. Consequently, gravitational four-point scattering amplitudes must coincide with the closed string four-point amplitude for s, t ≫ 1, identifying Λgr as the string scale. Our bound also implies that all metastable higher spin particles in 4d with masses m ≪ Λgr must satisfy a weak gravity condition.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weak gravity conjecture;Reviews of Modern Physics;2023-09-06

2. From rotating to charged black holes and back again;Journal of High Energy Physics;2022-11-29

3. Compton black-hole scattering for s ≤ 5/2;Journal of High Energy Physics;2022-02

4. Swampland conditions for higher derivative couplings from CFT;Journal of High Energy Physics;2022-01

5. Causality constraints in large N QCD coupled to gravity;Physical Review D;2021-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3