Abstract
Abstract
We study the quasinormal modes (QNM) of the charged C-metric, which physically stands for a charged accelerating black hole, with the help of Nekrasov’s partition function of 4d $$ \mathcal{N} $$
N
= 2 superconformal field theories (SCFTs). The QNM in the charged C-metric are classified into three types: the photon-surface modes, the accelerating modes and the near-extremal modes, and it is curious how the single quantization condition proposed in [1] can reproduce all the different families. We show that the connection formula encoded in terms of Nekrasov’s partition function captures all these families of QNM numerically and recovers the asymptotic behavior of the accelerating and the near-extremal modes analytically. Using the connection formulae of different 4d $$ \mathcal{N} $$
N
= 2 SCFTs, one can solve both the radial and the angular parts of the scalar perturbation equation respectively. The same algorithm can be applied to the de Sitter (dS) black holes to calculate both the dS modes and the photon-sphere modes.
Publisher
Springer Science and Business Media LLC
Reference128 articles.
1. G. Aminov, A. Grassi and Y. Hatsuda, Black Hole Quasinormal Modes and Seiberg-Witten Theory, Annales Henri Poincare 23 (2022) 1951 [arXiv:2006.06111] [INSPIRE].
2. LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
3. W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4 (2017) 685 [INSPIRE].
4. W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [arXiv:1807.09495] [INSPIRE].
5. TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献