Abstract
Abstract
We study remarkable connections between twistor-string formulas for tree amplitudes in $$ \mathcal{N} $$
N
= 4 SYM and $$ \mathcal{N} $$
N
= 6 ABJM, and the corresponding momentum amplituhedron in the kinematic space of D = 4 and D = 3, respectively. Based on the Veronese map to positive Grassmannians, we define a twistor-string map from G+(2, n) to a (2n−4)-dimensional subspace of the 4d kinematic space where the momentum amplituhedron of SYM lives. We provide strong evidence that the twistor-string map is a diffeomorphism from G+(2, n) to the interior of momentum amplituhedron; the canonical form of the latter, which is known to give tree amplitudes of SYM, can be obtained as pushforward of that of former. We then move to three dimensions: based on Veronese map to orthogonal positive Grassmannian, we propose a similar twistor-string map from the moduli space $$ {\mathrm{\mathcal{M}}}_{0,n}^{+} $$
ℳ
0
,
n
+
to a (n−3)-dimensional subspace of 3d kinematic space. The image gives a new positive geometry which conjecturally serves as the momentum amplituhedron for ABJM; its canonical form gives the tree amplitude with reduced supersymmetries in the theory. We also show how boundaries of compactified $$ {\mathrm{\mathcal{M}}}_{0,n}^{+} $$
ℳ
0
,
n
+
map to boundaries of momentum amplituhedra for SYM and ABJM corresponding to factorization channels of amplitudes, and in particular for ABJM case the map beautifully excludes all unwanted channels.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference44 articles.
1. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].
2. R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].
3. F. Cachazo and Y. Geyer, A ‘Twistor String’ Inspired Formula For Tree-Level Scattering Amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
4. F. Cachazo and D. Skinner, Gravity from Rational Curves in Twistor Space, Phys. Rev. Lett. 110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].
5. F. Cachazo, L. Mason and D. Skinner, Gravity in Twistor Space and its Grassmannian Formulation, SIGMA 10 (2014) 051 [arXiv:1207.4712] [INSPIRE].
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献