Abstract
Abstract
The existence of phase-separated states is an essential feature of infinite-volume systems with a thermal, first-order phase transition. At energies between those at which the phase transition takes place, equilibrium homogeneous states are either metastable or suffer from a spinodal instability. In this range the stable states are inhomogeneous, phase-separated states. We use holography to investigate how this picture is modified at finite volume in a strongly coupled, four-dimensional gauge theory. We work in the planar limit, N → ∞, which ensures that we remain in the thermodynamic limit. We uncover a rich set of inhomogeneous states dual to lumpy black branes on the gravity side, as well as first- and second-order phase transitions between them. We establish their local (in)stability properties and show that fully non-linear time evolution in the bulk takes unstable states to stable ones.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献