Edge modes as reference frames and boundary actions from post-selection

Author:

Carrozza SylvainORCID,Höhn Philipp A.ORCID

Abstract

Abstract We introduce a general framework realizing edge modes in (classical) gauge field theory as dynamical reference frames, an often suggested interpretation that we make entirely explicit. We focus on a bounded region M with a co-dimension one time-like boundary Γ, which we embed in a global spacetime. Taking as input a variational principle at the global level, we develop a systematic formalism inducing consistent variational principles (and in particular, boundary actions) for the subregion M. This relies on a post-selection procedure on Γ, which isolates the subsector of the global theory compatible with a general choice of gauge-invariant boundary conditions for the dynamics in M. Crucially, the latter relate the configuration fields on Γ to a dynamical frame field carrying information about the spacetime complement of M; as such, they may be equivalently interpreted as frame-dressed or relational observables. Generically, the external frame field keeps an imprint on the ensuing dynamics for subregion M, where it materializes itself as a local field on the time-like boundary Γ; in other words, an edge mode. We identify boundary symmetries as frame reorientations and show that they divide into three types, depending on the boundary conditions, that affect the physical status of the edge modes. Our construction relies on the covariant phase space formalism, and is in principle applicable to any gauge (field) theory. We illustrate it on three standard examples: Maxwell, Abelian Chern-Simons and non-Abelian Yang-Mills theories. In complement, we also analyze a mechanical toy-model to connect our work with recent efforts on (quantum) reference frames.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3