Logarithmic supertranslations and supertranslation-invariant Lorentz charges

Author:

Fuentealba Oscar,Henneaux MarcORCID,Troessaert CédricORCID

Abstract

Abstract We extend the BMS(4) group by adding logarithmic supertranslations. This is done by relaxing the boundary conditions on the metric and its conjugate momentum at spatial infinity in order to allow logarithmic terms of carefully designed form in the asymptotic expansion, while still preserving finiteness of the action. Standard theorems of the Hamiltonian formalism are used to derive the (finite) generators of the logarithmic supertranslations. As the ordinary supertranslations, these depend on a function of the angles. Ordinary and logarithmic supertranslations are then shown to form an abelian subalgebra with non-vanishing central extension. Because of this central term, one can make nonlinear redefinitions of the generators of the algebra so that the pure supertranslations (ℓ > 1 in a spherical harmonic expansion) and the logarithmic supertranslations have vanishing brackets with all the Poincaré generators, and, in particular, transform in the trivial representation of the Lorentz group. The symmetry algebra is then the direct sum of the Poincaré algebra and the infinite-dimensional abelian algebra formed by the pure supertranslations and the logarithmic supertranslations (with central extension). The pure supertranslations are thus completely decoupled from the standard Poincaré algebra in the asymptotic symmetry algebra. This implies in particular that one can provide a definition of the angular momentum which is manifestly free from supertranslation ambiguities. An intermediate redefinition providing a partial decoupling of the pure and logarithmic supertranslations is also given.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference54 articles.

1. P.G. Bergmann, ‘Gauge-Invariant’ Variables in General Relativity, Phys. Rev. 124 (1961) 274 [INSPIRE].

2. A. Ashtekar, Logarithmic ambiguities in the description of spatial infinity, Foundations of Physics 15 (1985) 419.

3. A. Ashtekar and R. Penrose, Mass positivity from focussing and the structure of spacelike infinity, in Further advances in Twistor Theory. Volume II, L. Mason, L.P. Hughston and P.Z. Kobak eds, Longman, Harlow (1995), pp. 169–173 [ISBN:9780582004658].

4. R. Beig and B. Schmidt, Einstein’s equations near spatial infinity, Commun. Math. Phys. 87 (1982) 65.

5. R. Beig, Integration Of Einstein’s Equations Near Spatial Infinity, UWThPh-1983-10 (1983) [INSPIRE].

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3