Holographic and localization calculations of boundary F for $$ \mathcal{N} $$ = 4 SUSY Yang-Mills theory

Author:

Van Raamsdonk Mark,Waddell Chris

Abstract

Abstract $$ \mathcal{N} $$ N = 4 Supersymmetric Yang-Mills (SYM) theory can be defined on a half-space with a variety of boundary conditions preserving scale invariance and half of the original supersymmetry; more general theories with the same symmetry can be obtained by coupling to a 3D SCFT at the boundary. Each of these theories is characterized by a quantity called “boundary F”, conjectured to decrease under boundary renormalization group flows. In this paper, we calculate boundary F for U(N) $$ \mathcal{N} $$ N = 4 SYM theory with the most general half-supersymmetric boundary conditions arising from string theory constructions with D3-branes ending on collections of D5-branes and/or NS5-branes. We first perform the calculation holographically by evaluating the entanglement entropy for a half-ball centered on the boundary using the Ryu-Takayanagi formula in the dual type IIB supergravity solutions. For boundary conditions associated with D3-branes ending on D5 branes only or NS5-branes only, we also calculate boundary F exactly by evaluating the hemisphere partition function using supersymmetric localization. The leading terms at large N in the supergravity and localization results agree exactly as a function of the t’ Hooft coupling λ.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Splitting interfaces in 4d $$ \mathcal{N} $$ = 4 SYM;Journal of High Energy Physics;2023-12-11

2. Aspects of dynamical cobordism in AdS/CFT;Journal of High Energy Physics;2023-08-21

3. Vacuum transitions in two-dimensions and their holographic interpretation;Journal of High Energy Physics;2023-05-24

4. AdS/BCFT with brane-localized scalar field;Journal of High Energy Physics;2023-03-15

5. Brane dynamics of holographic BCFTs;Journal of High Energy Physics;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3