Abstract
Abstract
In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference31 articles.
1. F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. 100B (1981) 65 [INSPIRE].
2. K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
3. P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
4. O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals, Acta Phys. Polon. B 29 (1998) 2655 [hep-ph/9812250] [INSPIRE].
5. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献