Abstract
Abstract
Background and aim
Artificial intelligence (AI) has emerged as a promising technology in the field of endocrinology, offering significant potential to revolutionize the diagnosis, treatment, and management of endocrine disorders. This comprehensive review aims to provide a concise overview of the current landscape of AI applications in endocrinology and metabolism, focusing on the fundamental concepts of AI, including machine learning algorithms and deep learning models.
Methods
The review explores various areas of endocrinology where AI has demonstrated its value, encompassing screening and diagnosis, risk prediction, translational research, and “pre-emptive medicine”. Within each domain, relevant studies are discussed, offering insights into the methodology and main findings of AI in the treatment of different pathologies, such as diabetes mellitus and related disorders, thyroid disorders, adrenal tumors, and bone and mineral disorders.
Results
Collectively, these studies show the valuable contributions of AI in optimizing healthcare outcomes and unveiling new understandings of the intricate mechanisms underlying endocrine disorders. Furthermore, AI-driven approaches facilitate the development of precision medicine strategies, enabling tailored interventions for patients based on their individual characteristics and needs.
Conclusions
By embracing AI in endocrinology, a future can be envisioned where medical professionals and AI systems synergistically collaborate, ultimately enhancing the lives of individuals affected by endocrine disorders.
Funder
European Union
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献