Competing risk nomogram and risk classification system for evaluating overall and cancer-specific survival in neuroendocrine carcinoma of the cervix: a population-based retrospective study

Author:

Liu J.,Lyu Y.,He Y.,Ge J.,Zou W.,Liu S.,Yang H.,Li J.,Jiang K.ORCID

Abstract

Abstract Objective Neuroendocrine carcinoma of the cervix (NECC) is a rare malignancy with poor clinical prognosis due to limited therapeutic options. This study aimed to establish a risk-stratification score and nomogram models to predict prognosis in NECC patients. Methods Data on individuals diagnosed with NECC between 2000 and 2019 were retrieved from the Surveillance Epidemiology and End Results (SEER) database and then randomly classified into training and validation cohorts (7:3). Univariate and multivariate Cox regression analyses evaluated independent indicators of prognosis. Least absolute shrinkage and selection operator (LASSO) regression analysis further assisted in confirming candidate variables. Based on these factors, cancer-specific survival (CSS) and overall survival (OS) nomograms that predict survival over 1, 3, and 5 years were constructed. The receiver operating characteristic (ROC) curve, the concordance index (C-index), and the calibration curve estimated the precision and discriminability of the competing risk nomogram for both cohorts. Finally, we assessed the clinical value of the nomograms using decision curve analysis (DCA). Results Data from 2348 patients were obtained from the SEER database. Age, tumor stage, T stage, N stage, chemotherapy, radiotherapy, and surgery predicted OS. Additionally, histological type was another standalone indicator of CSS prognosis. For predicting CSS, the C-index was 0.751 (95% CI 0.731 ~ 0.770) and 0.740 (95% CI 0.710 ~ 0.770) for the training and validation cohorts, respectively. Furthermore, the C-index in OS prediction was 0.757 (95% CI 0.738 ~ 0.776) and 0.747 (95% CI 0.718 ~ 0.776) for both cohorts. The proposed model had an excellent discriminative ability. Good accuracy and discriminability were also demonstrated using the AUC and calibration curves. Additionally, DCA demonstrated the high clinical potential of the nomograms for CSS and OS prediction. We constructed a corresponding risk classification system using nomogram scores. For the whole cohort, the median CSS times for the low-, moderate-, and high-risk groups were 59.3, 19.5, and 7.4 months, respectively. Conclusion New competing risk nomograms and a risk classification system were successfully developed to predict the 1-, 3-, and 5-year CSS and OS of NECC patients. The models are internally accurate and reliable and may guide clinicians toward better clinical decisions and the development of personalized treatment plans.

Funder

National Natural Science Foundation of China

Shaanxi Province key R&D Project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3