Putative circulating adipose tissue-derived stem cells, obesity, and metabolic syndrome features

Author:

Bonora B. M.,Cappellari R.,Albiero M.,Prevedello L.,Foletto M.,Vettor R.,Avogaro A.,Fadini G. P.ORCID

Abstract

Abstract Purpose In mice, adipose tissue-derived stem cells (ASCs) reach the systemic circulation and establish ectopic adipose depots fostering insulin resistance, but whether this occurs in humans is unknown. We examined circulating ASCs in individuals with various combination of metabolic syndrome traits. Methods We enrolled patients attending a routine metabolic evaluation or scheduled for bariatric surgery. We quantified ASCs as CD34+CD45CD31(CD36+) cells in the stromal vascular fraction of subcutaneous and visceral adipose tissue samples and examined the presence and frequency of putative ASCs in peripheral blood. Results We included 111 patients (mean age 59 years, 55% males), 40 of whom were scheduled for bariatric surgery. The population of CD34+CD45CD31 ASCs was significantly more frequent in visceral than subcutaneous adipose depots (10.4 vs 4.1% of the stromal vascular fraction; p < 0.001), but not correlated with BMI or metabolic syndrome traits. The same phenotype of ASCs was detectable in peripheral blood of 58.6% of patients. Those with detectable circulating ASCs had significantly higher BMI (37.8 vs 33.3 kg/m2; p = 0.003) and waist (111.2 vs 105.4 cm; p = 0.001), but no difference in other metabolic syndrome traits (p = 0.84). After bariatric surgery, patients with detectable circulating ASCs had greater BMI reductions at 6 months (− 10.4 vs − 7.8 kg/m2; p = 0.014). Conclusion Presence of putative circulating ASCs, antigenically similar to those observed in the adipose tissue, is associated with greater adiposity and larger BMI reduction after surgery, but not with clinical signs of metabolic impairment. The role of circulating ASCs in adipose tissue biology and systemic metabolism deserves further investigation.

Funder

University of Padova

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3