Comprehensive transcriptomic profiling and mutational landscape of primary gastric linitis plastica

Author:

Liu Zhu,Hong Lian-Lian,Zheng Jin-Sen,Ling Zhe-Nan,Zhang Zhi-Long,Qi Ya-Nan,Zhang Xin-Yu,Zhu Tian-Yu,Wang Jiu-Li,Han Jing,Chen Xiang-Liu,Yu Qi-Ming,Wang Shi,Li Pei,Ling Zhi-QiangORCID

Abstract

Abstract Background Primary gastric linitis plastica (GLP) is a distinct phenotype of gastric cancer with poor survival. Comprehensive molecular profiles and putative therapeutic targets of GLP remain undetermined. Methods We subjected 10 tumor-normal tissue pairs to whole exome sequencing (WES) and whole transcriptome sequencing (WTS). 10 tumor samples were all GLP which involves 100% of the gastric wall macroscopically. TCGA data were compared to generate the top mutated genes and the overexpressed genes in GLP. Results Our results reveal that GLP has distinctive genomic and transcriptomic features, dysfunction in the Hippo pathway is likely to be a key step during GLP development. 6 genes were identified as significantly highly mutated genes in GLP, including AOX1, ANKRD36C, CPXM1, PTPN14, RPAP1, and DCDC1). MUC6, as a previously identified gastric cancer driver gene, has a high mutation rate (20%) in GLP. 20% of patients in our GLP cohort had CDH1 mutations, while none had RHOA mutations. GLP exhibits high immunodeficiency and low AMPK pathway activity. Our WTS results showed that 3 PI3K-AKT pathway-related genes (PIK3R2, AKT3, and IGF1) were significantly up-regulated in GLP. Two genes were identified using immunohistochemistry (IHC), IGF2BP3 and MUC16, which specifically expressed in diffuse-type-related gastric cancer cell lines, and its knockdown inhibits PI3K-AKT pathway activity. Conclusions We provide the first integrative genomic and transcriptomic profiles of GLP, which may facilitate its diagnosis, prognosis, and treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Gastroenterology,Oncology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3