1. Babson, E., Onn, S., Thomas, R. (2003). The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Advances in Applied Mathematics, 30(3), 529–544.
2. Bayer, D., Morrison, I. (1988). Standard bases and geometric invariant theory. I. Initial ideals and state polytopes. Journal of Symbolic Computation, 6(2–3), 209–217.
3. Becker, T., Weispfenning, V. (1991). The Chinese remainder problem, multivariate interpolation, and Gröbner bases. In ISSAC ’91: Proceedings of the 1991 international symposium on symbolic and algebraic computation (pp. 64–69).
4. Bernstein, Y., Maruri-Aguilar, H., Onn, S., Riccomagno, E., Wynn, H. (2010). Minimal average degree aberration and the state polytope for experimental designs. Annals of the Institute of Statistical Mathematics, 62, 673–698.
5. Box, G. E. P., Hunter, J. S., Hunter, W. G. (2005). Statistics for experimenters: Design, innovation, and discovery (2nd ed.). Hoboken, NJ: Wiley Series in Probability and Statistics, Wiley-Interscience.