Abstract
AbstractThe paper discusses very general extensions to existing inflation models for discrete random variables, allowing an arbitrary set of points in the sample space to be either inflated or deflated relative to a baseline distribution. The term flation is introduced to cover either inflation or deflation of counts. Examples include one-inflated count models where the baseline distribution is zero-truncated and count models for data with a few unusual large values. The main result is that inference about the baseline distribution can be based solely on the truncated distribution which arises when the entire set of flation points is truncated. A major application of this result relates to estimating the size of a hidden target population, and examples are provided to illustrate our findings.
Funder
University of Southampton
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献