Phosphorus plant removal from European agricultural land

Author:

Panagos PanosORCID,Muntwyler Anna,Liakos Leonidas,Borrelli Pasquale,Biavetti Irene,Bogonos Mariia,Lugato Emanuele

Abstract

AbstractPhosphorus (P) is an important nutrient for all plant growth and it has become a critical and often imbalanced element in modern agriculture. A proper crop fertilization is crucial for production, farmer profits, and also for ensuring sustainable agriculture. The European Commission has published the Farm to Fork (F2F) Strategy in May 2020, in which the reduction of the use of fertilizers by at least 20% is among one of the main objectives. Therefore, it is important to look for the optimal use of P in order to reduce its pollution effects but also ensure future agricultural production and food security. It is essential to estimate the P budget with the best available data at the highest possible spatial resolution. In this study, we focused on estimating the P removal from soils by crop harvest and removal of crop residues. Specifically, we attempted to estimate the P removal by taking into account the production area and productivity rates of 37 crops for 220 regions in the European Union (EU) and the UK. To estimate the P removal by crops, we included the P concentrations in plant tissues (%), the crop humidity rates, the crop residues production, and the removal rates of the crop residues. The total P removal was about 2.55 million tonnes (Mt) (± 0.23 Mt), with crop harvesting having the larger contribution (ca. 94%) compared to the crop residues removal. A Monte-Carlo analysis estimated a ± 9% uncertainty. In addition, we performed a projection of P removal from agricultural fields in 2030. By providing this picture, we aim to improve the current P balances in the EU and explore the feasibility of F2F objectives.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Food Animals,Food Science,Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3