Author:
Li Zhongtao,Zhang Weidong,Wu Zhenggang
Abstract
AbstractTo shed light into the application potential of high-entropy alloys as “interlayer” materials for Al-steel solid-state joining, we investigated the nature of the CoCrFeMnNi/Fe and CoCrFeMnNi/Al solid/solid interfaces, focusing on the bonding behavior and phase components. Good metallurgical bonding without the formation of hard and brittle IMC can be achieved for CoCrFeMnNi/Fe solid/solid interface. In contrast to the formation of Al5Fe2 phase at the Fe/Al interface, Al13Fe4-type IMC, in which the Fe site is co-occupied equally by Co, Cr, Fe, Mn and Ni, dominates the CoCrFeMnNi/Al interface. Although the formation of IMC at the CoCrFeMnNi/Al interface is not avoidable, the thickness and hardness of the Al13(CoCrFeMnNi)4 phase formed at the CoCrFeMnNi/Al interface are significantly lower than the Al5Fe2 phase formed at the Fe/Al interface. The activation energies for the interdiffusion of Fe/Al and CoCrFeMnNi/Al static diffusion couple are 341.6 kJ/mol and 329.5 kJ/mol, respectively. Despite this similarity, under identical static annealing condition, the interdiffusion coefficient of the CoCrFeMnNi/Al diffusion couple is significantly lower than that of the Fe/Al diffusion couple. This is thus mainly a result of the reduced atomic mobility/diffusivity caused by the compositional complexity in CoCrFeMnNi high-entropy alloy.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献