The fracture predictive ability of lumbar spine BMD and TBS as calculated based on different combinations of the lumbar spine vertebrae

Author:

Shevroja Enisa,Mo Costabella François,Gonzalez Rodriguez Elena,Lamy Olivier,Hans Didier

Abstract

Abstract Summary Lumbar spine bone mineral density (BMD) and trabecular bone score (TBS) are both calculated on L1-L4 vertebrae. This study investigated the ability to predict osteoporotic fractures of BMD and TBS as calculated based on all possible adjacent L1-L4 vertebrae combinations. Present findings indicate that L1-L3 is an optimal combination to calculate LS-BMD or TBS. Introduction Lumbar spine (LS) BMD and TBS are both assessed in the LS DXA scans in the same region of interest, L1-L4. We aimed to investigate the ability to predict osteoporotic fractures of all the possible adjacent LS vertebrae combinations used to calculate BMD and TBS and to evaluate if any of these combinations performs better at osteoporotic fracture prediction than the traditional L1-L4 combination. Methods This study was embedded in OsteoLaus-women cohort in Switzerland. LS-DXA scans were performed using Discovery A System (Hologic). The incident vertebral fractures (VFs) and major osteoporotic fractures (MOFs) were assessed from VF assessments using Genant’s method or questionnaires (non-VF MOF). We ran logistic models using TBS and BMD to predict MOF, VF, and non-VF MOF, combining different adjustment factors (age, fracture level, or BMD). Results One thousand six hundred thirty-two women (mean ± SD) 64.4 ± 7.5 years, BMI 25.9 ± 4.5 kg/m2, were followed for 4.4 years and 133 experienced MOF. The association of one SD decrease L1-L3 BMD with the odds ratios (ORs) of MOF was OR 1.32 (95%CI 1.15–1.53), L2-L4 BMD was 1.25 (95%CI 1.09–1.42), and L1-L4 BMD was 1.30 (95%CI 1.14–1.48). One SD decrease in L1-L3 TBS was more strongly associated with the odds of having a MOF (OR 1.64, 95% CI 1.34–2.00), than one SD decrease in L2-L4 TBS (OR 1.48, 95% CI 1.21–1.81), or in L1-L4 TBS (OR 1.60, CI 95% 1.32–1.95). Conclusion Current findings indicate that L1-L3 is an optimal combination for the TBS or LS-BMD calculation.

Funder

Swiss National Foundation for Science

University of Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3