Effect of hot water maceration, rehydration, and soft tissue presence on 3D geometry of bone

Author:

Bittner-Frank Martin,Strassl Andreas,Unger Ewald,Hirtler Lena,Kainberger Franz,Windhager Reinhard,Moscato Francesco,Benca EmirORCID

Abstract

Abstract Purpose In forensic medicine, maceration is often essential for examining bone surfaces, serving purposes such as identifying cut marks, making geometric measurements, and determining the victim’s age. While hot water maceration removes soft tissue effectively, it is known to cause bone surface shrinkage. This raises the question of whether this effect is permanent or if it can be partially reversed through rehydration, considering the presence of soft tissue. Methods Computed tomography (CT) scans were conducted on the radii of 20 paired human anatomic forearm specimens. Subsequently, the radii were extracted, macerated in 60 °C water, CT-scanned in an air environment, rehydrated, re-implanted into the forearms, and CT-scanned again. Results Maceration resulted in a mean shrinkage of 0.12 mm on the outer bone surface. This shrinkage was nearly fully recoverable for the diaphysis after rehydration and accounting for soft tissue surrounding the bone. In contrast, the epiphysis showed permanent shrinkage, likely due to the loss of small bone fragments. Analysis of the inner bone surface indicated a smaller effect, but with significant standard deviations, especially for the epiphysis, possibly related to the less well-defined nature of the inner bone surface. Conclusion The epiphyseal surface of hot water-macerated bone will, on average, be approximately 0.15 mm deflated and cannot retain the original surface. On the other hand, the diaphyseal surface is less affected and can be nearly completely restored after rehydration and accounting for soft tissue surrounding the bone.

Funder

Medical University of Vienna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3