Determination of lamotrigine in human plasma by HPLC-PDA. Application to forensic samples

Author:

Sánchez-Sellero InésORCID,Álvarez-Freire IvánORCID,Cabarcos-Fernández PamelaORCID,Janza-Candal Lidia,Tabernero-Duque María JesúsORCID,Bermejo-Barrera Ana MaríaORCID

Abstract

Abstract Purpose Therapeutic drug monitoring of plasma lamotrigine (LTG) has customarily been carried out in order to prevent some its adverse effects. For forensic purposes, determination of LTG in plasma is an useful tool in cases of accidental overdose or suicidal attempts. Currently, there are several analytical methods available including some based on LC tandem mass spectrometry techniques, but simple and accessible LC-UV methods still can be useful for the purpose. Here we report on a new high-performance liquid chromatography method for the determination of lamotrigine in human plasma which has been developed and validated including selectivity, sensitivity, accuracy, precision and recovery studies. Methods Lamotrigine and the internal standard chloramphenicol were extracted from plasma using liquid-liquid extraction using small volumes of buffer and ethylacetate. Detection was monitored at 305.7 and 276.0 nm for lamotrigine and chloramphenicol, respectively. Results The method was linear concentration dependence within the range of 0.1–10 µg/ml, with a mean coefficient of correlation r = 0.993. The limit of detection (LOD) was 0.04 µg/ml and the limit of quantification (LOQ) was 0.1 µg/ml. Intra and interday precision values were lower than 9.0% at all concentrations studied. The intra and interday accuracy values ranged from − 7.6 to 10.1%. Recovery was found to be 98.9% or higher. The method here described was successfully applied to 11 postmortem blood samples received at the Forensic Sciences Institute of Santiago de Compostela (Spain). Conclusion A new HPLC method for the determination of lamotrigine in human plasma was developed and validated. A liquid-liquid extraction using small volumes of buffer and ethylacetate was optimized. The proposed method is suitable for forensic toxicological analysis.

Funder

Universidade de Santiago de Compostela

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3