Detecting DNA damage in stored blood samples

Author:

Schulze Johann KristinaORCID,Bauer Hannah,Wiegand Peter,Pfeiffer Heidi,Vennemann Marielle

Abstract

AbstractSeveral commercially available quantitative real-time PCR (qPCR) systems enable highly sensitive detection of human DNA and provide a degradation index (DI) to assess DNA quality. From routine casework in forensic genetics, it was observed that DNA degradation in forensic samples such as blood samples stored under sub-optimal conditions leads to visible effects in multiplex analyses of short tandem repeat markers (STRs) due to decreased amplification efficiencies in longer amplicons. It was further noticed that degradation indices often remain below the value that is considered to be critical. Thus, the aim of this work was to systematically analyze this effect and to compare conventional qPCR assays with a modified qPCR approach using uracil DNA glycosylase (UNG) and DNA quality assessment methods based on electrophoresis. Blood samples were stored at three different storage temperatures for up to 316 days. Significantly increased DNA recovery was observed from samples stored at high temperatures (37 °C) compared samples stored at room temperature and 4 °C. We observed typical effects of degradation in STR analyses but no correlation between DI and storage time in any of the storage conditions. Adding UNG slightly increased the sensitivity of detecting DNA degradation in one of the qPCR kits used in this study. This observation was not confirmed when using a second qPCR system. Electrophoretic systems did also not reveal significant correlations between integrity values and time. Methods for detecting DNA degradation are usually limited to the detection of DNA fragmentation, and we conclude that degradation affecting forensic STR typing is more complex.

Funder

Deutsche Forschungsgemeinschaft

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3