Abstract
AbstractEswatini is on the brink of malaria elimination and had however, had to shift its target year to eliminate malaria on several occasions since 2015 as the country struggled to achieve its zero malaria goal. We conducted a Bayesian geostatistical modeling study using malaria case data. A Bayesian distributed lags model (DLM) was implemented to assess the effects of seasonality on cases. A second Bayesian model based on polynomial distributed lags was implemented on the dataset to improve understanding of the lag effect of environmental factors on cases. Results showed that malaria increased during the dry season with proportion 0.051 compared to the rainy season with proportion 0.047 while rainfall of the preceding month (Lag2) had negative effect on malaria as it decreased by proportion − 0.25 (BCI: − 0.46, − 0.05). Night temperatures of the preceding first and second month were significantly associated with increased malaria in the following proportions: at Lag1 0.53 (BCI: 0.23, 0.84) and at Lag2 0.26 (BCI: 0.01, 0.51). Seasonality was an important predictor of malaria with proportion 0.72 (BCI: 0.40, 0.98). High malaria rates were identified for the months of July to October, moderate rates in the months of November to February and low rates in the months of March to June. The maps produced support-targeted malaria control interventions. The Bayesian geostatistical models could be extended for short-term and long-term forecasting of malaria supporting-targeted response both in space and time for effective elimination.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Cohen JM, Dlamini S, Novotny JM, Kandula D, Kunene S, Tatem AJ. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland. Malar J. 2013;12(1):61.
2. Hsiang MS, Hwang J, Kunene S, Drakeley C, Kandula D, Novotny J, et al. Surveillance for malaria elimination in swaziland: a national cross-sectional study using pooled pcr and serology. PLoS ONE. 2012;7(1):e29550.
3. World Health Organization. World malaria report 2021 [Internet]. World Health Organization; 2021 [cited 2022 Aug 4]. liv, 263. Available from: https://apps.who.int/iris/handle/10665/350147
4. Public health round-up. Bull World Health Organ. 2021;99(8):544–5.
5. Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376(9752):1592–603.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献