A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease

Author:

Raparelli ValeriaORCID,Romiti Giulio Francesco,Di Teodoro Giulia,Seccia Ruggiero,Tanzilli Gaetano,Viceconte Nicola,Marrapodi Ramona,Flego Davide,Corica Bernadette,Cangemi Roberto,Pilote Louise,Basili Stefania,Proietti Marco,Palagi Laura,Stefanini Lucia,Tiberti Claudio,Panimolle Federica,Isidori Andrea,Giannetta Elisa,Venneri Mary Anna,Napoleone Laura,Novo Marta,Quattrino Silvia,Ceccarelli Simona,Anastasiadou Eleni,Megiorni Francesca,Marchese Cinzia,Mangieri Enrico,Tanzilli Gaetano,Viceconte Nicola,Barillà Francesco,Gaudio Carlo,Paravati Vincenzo,Tellan Guglielmo,Ettorre Evaristo,Servello Adriana,Miraldi Fabio,Moretti Andrea,Tanzilli Alessandra,Mazzonna Piergiovanni,Al Kindy Suleyman,Iorio Riccardo,Di Iorio Martina,Petriello Gennaro,Gioffrè Laura,Indolfi Eleonora,Pero Gaetano,Cocco Nino,Iannetta Loredana,Giannuzzi Sara,Centaro Emilio,Sergi Sonia Cristina,Pignatelli Pasquale,Amoroso Daria,Bartimoccia Simona,Minisola Salvatore,Morelli Sergio,Fraioli Antonio,Nocchi Silvia,Fontana Mario,Toriello Filippo,Ruscio Eleonora,Todisco Tommaso,Sperduti Nicolò,Santangelo Giuseppe,Visioli Giacomo,Vano Marco,Borgi Marco,Antonini Ludovica Maria,Robuffo Silvia,Tucci Claudia,Rossoni Agostino,Spugnardi Valeria,Vernile Annarita,Santoliquido Mariateresa,Santori Verdiana,Tosti Giulia,Recchia Fabrizio,Morricone Francesco,Scacciavillani Roberto,Lipari Alice,Zito Andrea,Testa Floriana,Ricci Giulia,Vellucci Ilaria,Vincenti Marianna,Pietropaolo Silvia,Scala Camilla,Rubini Nicolò,Tomassi Marta,Rozzi Gloria,Santomenna Floriana,Cantelmi Claudio,Costanzo Giacomo,Rumbolà Lucas,Giarrizzo Salvatore,Sapia Carlotta,Scotti Biagio,Talerico Giovanni,Toni Danilo,Falcou Anne,Pilote Louise,Kaur Amanpreet,Behlouli Hassan,Vestri Anna Rita,Ferroni Patrizia,Crescioli Clara,Antinozzi Cristina,Pignataro Francesca Serena,Bellini Tiziana,Zuliani Giovanni,Passaro Angelina,Gloria Brombo,Cutini Andrea,Capatti Eleonora,Dalla Nora Edoardo,Di Vece Francesca,D’Amuri Andrea,Romagnoli Tommaso,Polastri Michele,Violi Alessandra,Fortunato Valeria,Bella Alessandro,Greco Salvatore,Spaggiari Riccardo,Scaglione Gerarda,Di Vincenzo Alessandra,Manfredini Roberto,De Giorgi Alfredo,Carnevale Roberto,Nocella Cristina,Catalano Carlo,Carbone Iacopo,Galea Nicola,Suppa Marianna,Rosa Antonello,Galardo Gioacchino,Alessandroni Maria,Coppola Alessandro,Palladino Mariangela,Illuminati Giulio,Consorti Fabrizio,Mariani Paola,Neri Fabrizio,Salis Paolo,Segatori Antonio,Tellini Laurent,Costabile Gianluca,

Abstract

Abstract Background Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated. Objectives To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD. Methods From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD. Results Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23. Conclusions Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations. Clinical trial registration NCT02737982. Graphical abstract

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3