A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
-
Published:2023-04-01
Issue:9
Volume:112
Page:1263-1277
-
ISSN:1861-0684
-
Container-title:Clinical Research in Cardiology
-
language:en
-
Short-container-title:Clin Res Cardiol
Author:
Raparelli ValeriaORCID, Romiti Giulio Francesco, Di Teodoro Giulia, Seccia Ruggiero, Tanzilli Gaetano, Viceconte Nicola, Marrapodi Ramona, Flego Davide, Corica Bernadette, Cangemi Roberto, Pilote Louise, Basili Stefania, Proietti Marco, Palagi Laura, Stefanini Lucia, Tiberti Claudio, Panimolle Federica, Isidori Andrea, Giannetta Elisa, Venneri Mary Anna, Napoleone Laura, Novo Marta, Quattrino Silvia, Ceccarelli Simona, Anastasiadou Eleni, Megiorni Francesca, Marchese Cinzia, Mangieri Enrico, Tanzilli Gaetano, Viceconte Nicola, Barillà Francesco, Gaudio Carlo, Paravati Vincenzo, Tellan Guglielmo, Ettorre Evaristo, Servello Adriana, Miraldi Fabio, Moretti Andrea, Tanzilli Alessandra, Mazzonna Piergiovanni, Al Kindy Suleyman, Iorio Riccardo, Di Iorio Martina, Petriello Gennaro, Gioffrè Laura, Indolfi Eleonora, Pero Gaetano, Cocco Nino, Iannetta Loredana, Giannuzzi Sara, Centaro Emilio, Sergi Sonia Cristina, Pignatelli Pasquale, Amoroso Daria, Bartimoccia Simona, Minisola Salvatore, Morelli Sergio, Fraioli Antonio, Nocchi Silvia, Fontana Mario, Toriello Filippo, Ruscio Eleonora, Todisco Tommaso, Sperduti Nicolò, Santangelo Giuseppe, Visioli Giacomo, Vano Marco, Borgi Marco, Antonini Ludovica Maria, Robuffo Silvia, Tucci Claudia, Rossoni Agostino, Spugnardi Valeria, Vernile Annarita, Santoliquido Mariateresa, Santori Verdiana, Tosti Giulia, Recchia Fabrizio, Morricone Francesco, Scacciavillani Roberto, Lipari Alice, Zito Andrea, Testa Floriana, Ricci Giulia, Vellucci Ilaria, Vincenti Marianna, Pietropaolo Silvia, Scala Camilla, Rubini Nicolò, Tomassi Marta, Rozzi Gloria, Santomenna Floriana, Cantelmi Claudio, Costanzo Giacomo, Rumbolà Lucas, Giarrizzo Salvatore, Sapia Carlotta, Scotti Biagio, Talerico Giovanni, Toni Danilo, Falcou Anne, Pilote Louise, Kaur Amanpreet, Behlouli Hassan, Vestri Anna Rita, Ferroni Patrizia, Crescioli Clara, Antinozzi Cristina, Pignataro Francesca Serena, Bellini Tiziana, Zuliani Giovanni, Passaro Angelina, Gloria Brombo, Cutini Andrea, Capatti Eleonora, Dalla Nora Edoardo, Di Vece Francesca, D’Amuri Andrea, Romagnoli Tommaso, Polastri Michele, Violi Alessandra, Fortunato Valeria, Bella Alessandro, Greco Salvatore, Spaggiari Riccardo, Scaglione Gerarda, Di Vincenzo Alessandra, Manfredini Roberto, De Giorgi Alfredo, Carnevale Roberto, Nocella Cristina, Catalano Carlo, Carbone Iacopo, Galea Nicola, Suppa Marianna, Rosa Antonello, Galardo Gioacchino, Alessandroni Maria, Coppola Alessandro, Palladino Mariangela, Illuminati Giulio, Consorti Fabrizio, Mariani Paola, Neri Fabrizio, Salis Paolo, Segatori Antonio, Tellini Laurent, Costabile Gianluca,
Abstract
Abstract
Background
Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated.
Objectives
To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD.
Methods
From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD.
Results
Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23.
Conclusions
Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations.
Clinical trial registration
NCT02737982.
Graphical abstract
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca Università degli Studi di Ferrara
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,General Medicine
Reference59 articles.
1. Virani SS, Alonso A, Aparicio HJ et al (2021) Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation 143:e254–e743. https://doi.org/10.1161/cir.0000000000000950 2. Shaw LJ, Pepine CJ, Xie J et al (2017) Quality and Equitable Health Care Gaps for Women Attributions to Sex Differences in Cardiovascular Medicine. J Am Coll Cardiol 70:373–388. https://doi.org/10.1016/j.jacc.2017.05.051 3. Mauvais-Jarvis F, Merz NB, Barnes PJ et al (2020) Sex and gender: modifiers of health, disease, and medicine. Lancet 396:565–582. https://doi.org/10.1016/s0140-6736(20)31561-0 4. Tannenbaum C, Ellis RP, Eyssel F et al (2019) Sex and gender analysis improves science and engineering. Nature 575:137–146. https://doi.org/10.1038/s41586-019-1657-6 5. Cirillo D, Catuara-Solarz S, Morey C et al (2020) Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. Npj Digital Medicine 3:81. https://doi.org/10.1038/s41746-020-0288-5
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|