Abstract
AbstractLet $$S^{(\Lambda )}$$
S
(
Λ
)
denote the classical Littlewood–Paley operator formed with respect to a lacunary sequence $$\Lambda $$
Λ
of positive integers. Motivated by a remark of Pichorides, we obtain sharp asymptotic estimates of the behaviour of the operator norm of $$S^{(\Lambda )}$$
S
(
Λ
)
from the analytic Hardy space $$H^p_A (\mathbb {T})$$
H
A
p
(
T
)
to $$L^p (\mathbb {T})$$
L
p
(
T
)
and of the behaviour of the $$L^p (\mathbb {T}) \rightarrow L^p (\mathbb {T})$$
L
p
(
T
)
→
L
p
(
T
)
operator norm of $$S^{(\Lambda )}$$
S
(
Λ
)
($$1< p < 2$$
1
<
p
<
2
) in terms of the ratio of the lacunary sequence $$\Lambda $$
Λ
. Namely, if $$\rho _{\Lambda }$$
ρ
Λ
denotes the ratio of $$\Lambda $$
Λ
, then we prove that $$\begin{aligned} \sup _{\begin{array}{c} \Vert f \Vert _{L^p (\mathbb {T})} = 1 \\ f \in H^p_A (\mathbb {T}) \end{array}} \big \Vert S^{(\Lambda )} (f) \big \Vert _{L^p (\mathbb {T})} \lesssim \frac{1}{p-1} (\rho _{\Lambda } - 1)^{-1/2} \quad (1< p < 2) \end{aligned}$$
sup
‖
f
‖
L
p
(
T
)
=
1
f
∈
H
A
p
(
T
)
‖
S
(
Λ
)
(
f
)
‖
L
p
(
T
)
≲
1
p
-
1
(
ρ
Λ
-
1
)
-
1
/
2
(
1
<
p
<
2
)
and $$\begin{aligned} \big \Vert S^{(\Lambda )} \big \Vert _{L^p (\mathbb {T}) \rightarrow L^p (\mathbb {T})} \lesssim \frac{1}{(p-1)^{3/2}} (\rho _{\Lambda } - 1)^{-1/2} \quad (1<p < 2) \end{aligned}$$
‖
S
(
Λ
)
‖
L
p
(
T
)
→
L
p
(
T
)
≲
1
(
p
-
1
)
3
/
2
(
ρ
Λ
-
1
)
-
1
/
2
(
1
<
p
<
2
)
and that these results are optimal as $$p \rightarrow 1^+$$
p
→
1
+
. Variants in higher dimensions and in the Euclidean setting are also obtained.
Funder
Knut och Alice Wallenbergs Stiftelse
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Asmar, N., Berkson, E., Gillespie, T.A.: Transferred bounds for square functions. Houston J. Math. 17(4), 525–550 (1991)
2. Bakas, O.: Endpoint mapping properties of the Littlewood–Paley square function. Colloq. Math. 157(1), 1–15 (2019)
3. Bakas, O.: Variants of the Inequalities of Paley and Zygmund. J. Fourier Anal. Appl. 25(3), 1113–1133 (2019)
4. Bakas, O.: A multiplier inclusion theorem on product domains. Proc. Edinb. Math. Soc. 62(4), 1073–1088 (2019)
5. Bakas, O.: A variant of Yano’s extrapolation theorem on Hardy spaces. Arch. Math. 113(5), 537–549 (2019)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献