Inequalities for $$L^p$$-Norms that Sharpen the Triangle Inequality and Complement Hanner’s Inequality

Author:

Carlen Eric A.,Frank Rupert L.ORCID,Ivanisvili Paata,Lieb Elliott H.

Abstract

AbstractIn 2006 Carbery raised a question about an improvement on the naïve norm inequality $$\Vert f+g\Vert _p^p \le 2^{p-1}(\Vert f\Vert _p^p + \Vert g\Vert _p^p)$$ f + g p p 2 p - 1 ( f p p + g p p ) for two functions f and g in $$L^p$$ L p of any measure space. When $$f=g$$ f = g this is an equality, but when the supports of f and g are disjoint the factor $$2^{p-1}$$ 2 p - 1 is not needed. Carbery’s question concerns a proposed interpolation between the two situations for $$p>2$$ p > 2 with the interpolation parameter measuring the overlap being $$\Vert fg\Vert _{p/2}$$ f g p / 2 . Carbery proved that his proposed inequality holds in a special case. Here, we prove the inequality for all functions and, in fact, we prove an inequality of this type that is stronger than the one Carbery proposed. Moreover, our stronger inequalities are valid for all real $$p\ne 0$$ p 0 .

Funder

Directorate for Mathematical and Physical Sciences

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3