Semi-classical Analysis Around Local Maxima and Saddle Points for Degenerate Nonlinear Choquard Equations

Author:

Cingolani SilviaORCID,Tanaka KazunagaORCID

Abstract

AbstractWe study existence of semi-classical states for the nonlinear Choquard equation: $$\begin{aligned} -\varepsilon ^2\Delta v+ V(x)v = {1\over \varepsilon ^\alpha }(I_\alpha *F(v))f(v) \quad \text {in}\ {\mathbb {R}}^N, \end{aligned}$$ - ε 2 Δ v + V ( x ) v = 1 ε α ( I α F ( v ) ) f ( v ) in R N , where $$N\ge 3$$ N 3 , $$\alpha \in (0,N)$$ α ( 0 , N ) , $$I_\alpha (x)=A_\alpha /|{x}|^{N-\alpha }$$ I α ( x ) = A α / | x | N - α is the Riesz potential, $$F\in C^1({\mathbb {R}},{\mathbb {R}})$$ F C 1 ( R , R ) , $$F'(s)=f(s)$$ F ( s ) = f ( s ) and $$\varepsilon >0$$ ε > 0 is a small parameter. We develop a new variational approach, in which our deformation flow is generated through a flow in an augmented space to get a suitable compactness property and to reflect the properties of the potential. Furthermore our flow keeps the size of the tails of the function small and it enables us to find a critical point without introducing a penalization term. We show the existence of a family of solutions concentrating to a local maximum or a saddle point of $$V(x)\in C^N({\mathbb {R}}^N,{\mathbb {R}})$$ V ( x ) C N ( R N , R ) under general conditions on F(s). Our results extend the results by Moroz and Van Schaftingen (Calc Var Partial Differ Equ 52:199–235, 2015) for local minima (see also Cingolani and Tanaka (Rev Mat Iberoam 35(6):1885–1924, 2019)) and Wei and Winter (J Math Phys 50:012905, 2009) for non-degenerate critical points of the potential.

Funder

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3