Abstract
AbstractWe study existence of semi-classical states for the nonlinear Choquard equation: $$\begin{aligned} -\varepsilon ^2\Delta v+ V(x)v = {1\over \varepsilon ^\alpha }(I_\alpha *F(v))f(v) \quad \text {in}\ {\mathbb {R}}^N, \end{aligned}$$
-
ε
2
Δ
v
+
V
(
x
)
v
=
1
ε
α
(
I
α
∗
F
(
v
)
)
f
(
v
)
in
R
N
,
where $$N\ge 3$$
N
≥
3
, $$\alpha \in (0,N)$$
α
∈
(
0
,
N
)
, $$I_\alpha (x)=A_\alpha /|{x}|^{N-\alpha }$$
I
α
(
x
)
=
A
α
/
|
x
|
N
-
α
is the Riesz potential, $$F\in C^1({\mathbb {R}},{\mathbb {R}})$$
F
∈
C
1
(
R
,
R
)
, $$F'(s)=f(s)$$
F
′
(
s
)
=
f
(
s
)
and $$\varepsilon >0$$
ε
>
0
is a small parameter. We develop a new variational approach, in which our deformation flow is generated through a flow in an augmented space to get a suitable compactness property and to reflect the properties of the potential. Furthermore our flow keeps the size of the tails of the function small and it enables us to find a critical point without introducing a penalization term. We show the existence of a family of solutions concentrating to a local maximum or a saddle point of $$V(x)\in C^N({\mathbb {R}}^N,{\mathbb {R}})$$
V
(
x
)
∈
C
N
(
R
N
,
R
)
under general conditions on F(s). Our results extend the results by Moroz and Van Schaftingen (Calc Var Partial Differ Equ 52:199–235, 2015) for local minima (see also Cingolani and Tanaka (Rev Mat Iberoam 35(6):1885–1924, 2019)) and Wei and Winter (J Math Phys 50:012905, 2009) for non-degenerate critical points of the potential.
Funder
Università degli Studi di Bari Aldo Moro
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Alves, O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differential Equations 263(7), 3943–3988 (2017)
2. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140(3), 285–300 (1997)
3. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159(3), 253–271 (2001)
4. Bartsch, T., Liu, Y., Liu, Z.: Normalized solutions for a class of nonlinear Choquard equations. SN Partial Differ. Equ. Appl. 1(5(34)), 1–25 (2020)
5. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献