On a Formula for All Sets of Constant Width in 3D

Author:

Kawohl BerndORCID,Sweers GuidoORCID

Abstract

AbstractIn the recent paper “On a formula for sets of constant width in 2D, Comm. Pure Appl. Anal. 18 (2019), 2117–2131”, we gave a constructive formula for all 2d sets of constant width. Based on this result we derive here a formula for the parametrization of the boundary of bodies of constant width in 3 dimensions, with the formula depending on one function defined on $${\mathbb {S}}^2$$ S 2 . Each such function gives a minimal value $$r_0$$ r 0 and for all $$r\ge r_0$$ r r 0 one finds a body of constant width 2r. Moreover, we show that all bodies of constant width in 3d have such a parametrization. The last result needs a tool that we describe as ‘shadow domain’ and which is explained in an appendix. The construction is explicit and offers a parametrization different from the one given by T. Bayen, T. Lachand-Robert and É. Oudet in “Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal., 186 (2007), 225–249”.

Funder

Universität zu Köln

Publisher

Springer Science and Business Media LLC

Reference21 articles.

1. Bayen, T., Lachand-Robert, T., Oudet, É.: Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal. 186, 225–249 (2007)

2. Blaschke, W.: Einige Bemerkungen über Kurven und Flächen von konstanter Breite. Ber. Verh. Sächs. Akad. Leipzig 67, 290–297 (1915)

3. Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and its Applications, pp. 49–96. Basel, Birkhäuser (1983)

4. Danzer, L.: Über die maximale Dicke der ebenen Schnitte eines konvexen Körpers. Archiv der Mathematik 8, 314–316 (1957)

5. Euler, L.: De curvis triangularibus. Acta Academiae Scientarum Imperialis Petropolitinae 1778, 1781, 3–30 (Opera Omnia: Series 1, Volume 28, 298–321) http://eulerarchive.maa.org//docs/originals/E513.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Volume Computation for Meissner Polyhedra and Applications;Discrete & Computational Geometry;2024-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3