Abstract
AbstractIn the recent paper “On a formula for sets of constant width in 2D, Comm. Pure Appl. Anal. 18 (2019), 2117–2131”, we gave a constructive formula for all 2d sets of constant width. Based on this result we derive here a formula for the parametrization of the boundary of bodies of constant width in 3 dimensions, with the formula depending on one function defined on $${\mathbb {S}}^2$$
S
2
. Each such function gives a minimal value $$r_0$$
r
0
and for all $$r\ge r_0$$
r
≥
r
0
one finds a body of constant width 2r. Moreover, we show that all bodies of constant width in 3d have such a parametrization. The last result needs a tool that we describe as ‘shadow domain’ and which is explained in an appendix. The construction is explicit and offers a parametrization different from the one given by T. Bayen, T. Lachand-Robert and É. Oudet in “Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal., 186 (2007), 225–249”.
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Bayen, T., Lachand-Robert, T., Oudet, É.: Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal. 186, 225–249 (2007)
2. Blaschke, W.: Einige Bemerkungen über Kurven und Flächen von konstanter Breite. Ber. Verh. Sächs. Akad. Leipzig 67, 290–297 (1915)
3. Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and its Applications, pp. 49–96. Basel, Birkhäuser (1983)
4. Danzer, L.: Über die maximale Dicke der ebenen Schnitte eines konvexen Körpers. Archiv der Mathematik 8, 314–316 (1957)
5. Euler, L.: De curvis triangularibus. Acta Academiae Scientarum Imperialis Petropolitinae 1778, 1781, 3–30 (Opera Omnia: Series 1, Volume 28, 298–321) http://eulerarchive.maa.org//docs/originals/E513.pdf
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献