Abstract
AbstractWe study the relationship between sampling sequences in infinite dimensional Hilbert spaces of analytic functions and Marcinkiewicz–Zygmund inequalities in subspaces of polynomials. We focus on the study of the Hardy space and the Bergman space in one variable because they provide two settings with a strikingly different behavior.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Mathematical Surveys and Mongraphs;S Bergman,1950
2. Brown, L., Shields, A., Zeller, K.: On absolutely convergent exponential sums. Trans. Am. Math. Soc. 96, 162–183 (1960)
3. Bruna, J., Nicolau, A., Øyma, K.: A note on interpolation in the Hardy spaces of the unit disc. Proc. Am. Math. Soc. 124(4), 1197–1204 (1996)
4. Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2004)
5. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献