Abstract
AbstractWe obtain sharp rotation bounds for the subclass of homeomorphisms $$f:{\mathbb {C}}\rightarrow {\mathbb {C}}$$
f
:
C
→
C
of finite distortion which have distortion function in $$L^p_{loc}$$
L
loc
p
, $$p>1$$
p
>
1
, and for which a Hölder continuous inverse is available. The interest in this class is partially motivated by examples arising from fluid mechanics. Our rotation bounds hereby presented improve the existing ones, for which the Hölder continuity is not assumed. We also present examples proving sharpness.
Funder
Gobierno de España
Generalitat de Catalunya
European Research Council
Suomalainen Tiedeakatemia
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, vol. 48. Princeton University Press, Princeton, NJ (2009)
2. Astala, K., Iwaniec, T., Prause, I., Saksman, E.: Bilipschitz and quasiconformal rotation, stretching and multifractal spectra. Publ. Math. 121(1), 113–154 (2015)
3. Bahouri, H., Chemin, J.Y.: Equations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides. Arch. Ration. Mech. Anal. 127, 159–181 (1994)
4. Bongers, T.: Stretching and rotation sets of quasiconformal mappings. Ann. Acad. Sci. Fenn. Math. 44, 103–123 (2019)
5. Choi, K., Jeong I.: On the winding number for particle trajectories in a disk-like vortex patch of the Euler equations. http://arxiv.org/abs/2008.05085v2
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献