Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9, 641–651 (1998). https://doi.org/10.1142/S0129167X98000282
2. Abreu, M.: Kähler metrics on toric orbifolds. J. Differ. Geom. 58, 151–187 (2001). https://doi.org/10.4310/jdg/1090348285
3. Apostolov, V.: The Kähler Geometry of Toric Manifolds, Lecture Notes. http://www.cirget.uqam.ca/~apostolo/papers/toric-lecture-notes.pdf
4. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.: Hamiltonian $$2$$-forms in Kähler geometry II global classification. J. Differ. Geom. 68, 277–345 (2004). https://doi.org/10.4310/jdg/1146169934
5. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Ambitoric geometry II, extremal toric surfaces and Einstein 4-orbifolds. Ann. Sci. Ecole Norm. Supp. (4) 48, 1075–1112 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A product model for generalizing Poincaré-type Kähler metrics;Proceedings of the American Mathematical Society;2023-06-16