Abstract
AbstractFor analytic functions g on the unit disk with non-negative Maclaurin coefficients, we describe the boundedness and compactness of the integral operator $$T_g(f)(z)=\int _0^zf(\zeta )g'(\zeta )\,d\zeta $$
T
g
(
f
)
(
z
)
=
∫
0
z
f
(
ζ
)
g
′
(
ζ
)
d
ζ
from a space X of analytic functions in the unit disk to $$H^\infty $$
H
∞
, in terms of neat and useful conditions on the Maclaurin coefficients of g. The choices of X that will be considered contain the Hardy and the Hardy–Littlewood spaces, the Dirichlet-type spaces $$D^p_{p-1}$$
D
p
-
1
p
, as well as the classical Bloch and $$\mathord {\mathrm{BMOA}}$$
BMOA
spaces.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Junta de Andalucía
Publisher
Springer Science and Business Media LLC