Abstract
AbstractWe consider the spectral problem for the Grushin Laplacian subject to homogeneous Dirichlet boundary conditions on a bounded open subset of $${\mathbb {R}}^N$$
R
N
. We prove that the symmetric functions of the eigenvalues depend real analytically upon domain perturbations and we prove an Hadamard-type formula for their shape differential. In the case of perturbations depending on a single scalar parameter, we prove a Rellich–Nagy-type theorem which describes the bifurcation phenomenon of multiple eigenvalues. As corollaries, we characterize the critical shapes under isovolumetric and isoperimetric perturbations in terms of overdetermined problems and we deduce a new proof of the Rellich–Pohozaev identity for the Grushin eigenvalues.
Funder
Università degli Studi di Padova
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Università Ca’ Foscari di Venezia
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献