Abstract
AbstractWe prove a general sparse domination theorem in a space of homogeneous type, in which a vector-valued operator is controlled pointwise by a positive, local expression called a sparse operator. We use the structure of the operator to get sparse domination in which the usual $$\ell ^1$$
ℓ
1
-sum in the sparse operator is replaced by an $$\ell ^r$$
ℓ
r
-sum. This sparse domination theorem is applicable to various operators from both harmonic analysis and (S)PDE. Using our main theorem, we prove the $$A_2$$
A
2
-theorem for vector-valued Calderón–Zygmund operators in a space of homogeneous type, from which we deduce an anisotropic, mixed-norm Mihlin multiplier theorem. Furthermore, we show quantitative weighted norm inequalities for the Rademacher maximal operator, for which Banach space geometry plays a major role.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Alvarado, R., Mitrea, M.: Hardy spaces on Ahlfors-Regular quasi metric spaces, volume 2142 of Lecture Notes in Mathematics. Springer, Cham, (2015). A sharp theory
2. Anderson, T.C.: A framework for Calderón–Zygmund singular integral operators on spaces of homogeneous type. PhD thesis, Brown University (2015)
3. Anderson, T.C., Vagharshakyan, A.: A simple proof of the sharp weighted estimate for Calderón–Zygmund operators on homogeneous spaces. J. Geom. Anal. 24(3), 1276–1297 (2014)
4. Astala, K., Iwaniec, T., Saksman, E.: Beltrami operators in the plane. Duke Math. J. 107(1), 27–56 (2001)
5. Bailey, J., Brocchi, G., Reguera, M.C.: Quadratic sparse domination and weighted estimates for non-integral square functions. arXiv:2007.15928 (2020)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献