Abstract
AbstractIn this paper, we study a nonlinear Dirichlet problem driven by the (p, q)-Laplacian and with a reaction that has the combined effects of a negative concave term and of an asymmetric perturbation which is superlinear on the positive semiaxis and resonant in the negative one. We prove a multiplicity theorem for such problems obtaining three nontrivial solutions, all with sign information. Furthermore, under a local symmetry condition, we prove the existence of a whole sequence of sign-changing solutions converging to zero in $$C^1_0(\overline{\Omega })$$
C
0
1
(
Ω
¯
)
.
Funder
Technische Universität Berlin
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Am. Math. Soc. 196(915), 70 (2008)
2. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)
3. de Paiva, F.O., Massa, E.: Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal. 66(12), 2940–2946 (2007)
4. Díaz, J.I., Saá, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 521–524 (1987)
5. García Azorero, J.P., Peral Alonso, I., Manfredi, J.J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2(3), 385–404 (2000)