Abstract
AbstractIn this article, we show the existence of closed embedded self-shrinkers in $${\mathbb {R}}^{n+1}$$
R
n
+
1
that are topologically of type $$S^1\times M$$
S
1
×
M
, where $$M\subset S^n$$
M
⊂
S
n
is any isoparametric hypersurface in $$S^n$$
S
n
for which the multiplicities of the principle curvatures agree. This yields new examples of closed self-shrinkers, for example self-shrinkers of topological type $$S^1\times S^k\times S^k\subset {\mathbb {R}}^{2k+2}$$
S
1
×
S
k
×
S
k
⊂
R
2
k
+
2
for any k. If the number of distinct principle curvatures of M is one, the resulting self-shrinker is topologically $$S^1\times S^{n-1}$$
S
1
×
S
n
-
1
and the construction recovers Angenent’s shrinking doughnut (Angenent in Shrinking doughnuts, Birkhäuser, Boston, pp 21–38).
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Abresch, U.: Isoparametric hypersurfaces with four or six distinct principal curvatures. Necessary conditions on the multiplicities. Math. Ann. 264(3), 283–302 (1983)
2. Angenent, S.B., Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog,: Progr. Nonlinear Differential Equations Appl., vol. 7. Birkhäuser Boston, Boston, MA 1992, 21–38 (1989)
3. Cartan, E.: Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z. 45, 335–367 (1939)
4. Cartan, E.: Sur quelques familles remarquables d’hypersurfaces. C.R. Congres Math. Liége, 30–41 (1939)
5. Cartan, E.: Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions. Univ. Nac. Tucumán. Revista A. 1, 5–22 (1940)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献