Multijoints and Factorisation

Author:

Tang Michael Chi YungORCID

Abstract

AbstractWe solve the dual multijoint problem and prove the existence of so-called factorisations for arbitrary fields and multijoints of $$k_j$$ k j -planes. More generally, we deduce a discrete analogue of a theorem due in essence to Bourgain and Guth. Our result is a universal statement which describes a property of the discrete wedge product without any explicit reference to multijoints and is stated as follows: Suppose that $$k_1 + \ldots + k_d = n$$ k 1 + + k d = n . There is a constant $$C=C(n)$$ C = C ( n ) so that for any field $$\mathbb {F}$$ F and for any finitely supported function $$S : \mathbb {F}^n \rightarrow \mathbb {R}_{\ge 0}$$ S : F n R 0 , there are factorising functions $$s_{k_j} : \mathbb {F}^n\times {{\,\mathrm{{Gr}}\,}}(k_j, \mathbb {F}^n)\rightarrow \mathbb {R}_{\ge 0}$$ s k j : F n × Gr ( k j , F n ) R 0 such that $$\begin{aligned} \left( V_1 \wedge \cdots \wedge V_d\right) S\left( p\right) ^d \le \prod _{j=1}^d s_{k_j}\left( p, V_j\right) , \end{aligned}$$ V 1 V d S p d j = 1 d s k j p , V j , for every $$p\in \mathbb {F}^n$$ p F n and every tuple of planes $$V_j\in {{\,\mathrm{{Gr}}\,}}(k_j, \mathbb {F}^n)$$ V j Gr ( k j , F n ) , and $$\begin{aligned} \sum _{p\in \pi _j} s(p, e(\pi _j)) =C \left| \left| S\right| \right| _d, \end{aligned}$$ p π j s ( p , e ( π j ) ) = C S d , for every $$k_j$$ k j -plane $$\pi _j\subset \mathbb {F}^n$$ π j F n , where $$e(\pi _j)\in {{\,\mathrm{{Gr}}\,}}(k_j,\mathbb {F}^n)$$ e ( π j ) Gr ( k j , F n ) , is the translate of $$\pi _j$$ π j that contains the origin and $$\wedge $$ denotes the discrete wedge product.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3